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2014 Problem 3 : Twisted Rope

When twisted, the rope will form a helix or a loop

Abstract

Twisting a piece of string at some point causes the string to 

become buckled. Further twisting that piece of string will 

eventually cause it to coil around itself forming a Helix-Like structure. 

In this research, we investigated the formation of the first loop, and 

measured the distance of the two ends of the rope towards each other 

( D ) and the rotation angle ( R ). Displacements are controlled and 

the corresponding forces and moments remain passive. Several plastic 

ropes with different lengths are used. One of the ends of the ropes 

was fi xed and the other end was rotated. Once the fi rst loop occurred, 

the distance between the two ends of the ropes was measured. 

The experiment’s error was nearly 10% and we only surveyed the 

mathematical model in two dimensions. The gravity effect is neglected. 

We concluded that, by using the mathematical model, we can understand 

when a loop occurs with regards to specifi c (R)s and (D)s.

Introduction and theory

Twisting a piece of string at some point causes the string to become 

buckled. Further twisting that piece of string will eventually cause it 

to coil around itself forming a Helix-Like structure. This is something 

that all of us have observed at some point in our real life. Born , carried 

out some elegant large deflection bending experiments by hanging 

weights on the end of a rod (i.e., dead loading)[1]. Yabuta,using an 

energy method, assumes an initial helical deformation (which is 

Love’s solution[3]) and obtained the Greenhill,formula for the onset 

of looping, which in fact describes the primary bifurcation for a rod 

with zero bending moments at its ends. Modeling the loop as a circle, 

he also derived a formula for the point at which it reopens (i.e., pop-

out), which he compared with his experimental results[2]. Goss and 

coworkers by using varied R ( Rotation ) and fi xed D (slack ), found 

that if a loop forms in a rod, then unwinding the twist may instigate a 

dynamic jump as the rod pops out of self-contact[4]. The importance 

of this phenomenon is comprehended in several aspects of science. 

For example: In “engineering” ,  Marine cables under low tension 

and torsion on the sea fl oor undergo a buckling process 

during which tensional energy is converted to fl exural 

energy .  The cable becomes highly contorted with 

loops and tangles, this can permanently damage the 

cable. In “textile industry”, and the study of multi-

fi lament structures such as yarns is interesting.

In “biology” rod models are used to describe the 

supercoiling of DNA molecules .DNA supercoiling 

refers to the over- or under-winding of a DNA strand, 

and is an expression of the strain on that strand. 

Supercoiling is important in a number of biological 

processes, such as compacting DNA. Additionally, 

certain enzymes such as topoisomerases are able to 

change DNA topology to facilitate functions such as 

DNA replication or transcription.

It is a common observation that when a rope is 

twisted it tends to form loops or coils. This effect 

has been cited in physics to explain the instability of 

twisted magnetic fields [5]. If a DNA segment under 

twist strain is closed into a circle by joining its two 

ends and then allowed to move freely, the circular DNA 

would contort into a new shape. Such a contortion is a 

supercoil (Fig. 1).

Figure 2 -Supercoiled structure of linear DNA molecules with constrained ends.

Figure 1-Supercoiled structure of circular DNA molecules 
with low writhe. Note that the helical nature ofthe DNA 

duplex is omitted for clarity (Wikipedia).
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A superhelix is a molecular structure in which a 

helix is itself coiled into a helix. This is significant to 

both proteins and genetic material, such as overwound 

circular DNA. Contrary to intuition a topological 

property, the linking number, arises from the geometric 

properties twist and writhe according to the equation (1):

 Lk = T + W (1)

Where Lk is the linking number, W is the writhe and 

T is the twist of the coil. In mathematics, the linking 

number is a numerical invariant that describes the 

linking of two closed curves in three-dimensional space. 

In DNA this property does not change and can only be 

modifi ed by specialized enzymes. Intuitively, the linking 

number represents the number of times that each curve 

winds around the other. The linking number is always an 

integer, but may be positive or negative depending on the 

orientation of the two curves. The linking number was 

introduced by Gauss in the form of the linking integral. 

Any two closed curves in space, if allowed to pass 

through themselves but not each other, can be moved 

into exactly one of the following standard positions. This 

determines the linking number (Fig. 3).

Figure 3- Here on the left, Linking Number is found by counting 
thenumber of crossings and dividing by two(Wikipedia).

There is an algorithm to compute the linking number 

of two curves. Label each crossing as positive or 

negative, according to the following rule (Fig. 4). 

Figure 4-This Figure shows us, each crossing is positive or 
negative (Wikipedia).

The total number of positive crossings minus the 

total number of negative crossings is equal to twice the 

linking number (Eq. 2).

 Lk =  (2)

Where n1, n2, n3, n4 represent the number of crossings 

of each of the four types.

The two sums n1 + n3 and n2 + n4 are always equal, 

which leads to (Eq. 3).

 Lk = n1- n4  = n2- n (3)

Note that n1-n4 involves only the under crossings of 

the blue curve by the red, while n2-n3 involves only the 

overcrossings. Experience teaches us that the response of 

a rod depends on the material it is made of, the geometry 

of its cross-section, the manner in which it is held at its 

ends, the type of loading, and the loading sequence.

In this research, we investigated the formation of the 

first loop , and measured the distance of the two ends 

of the rope towards each other ( D ) and the rotation 

angle ( R ). the displacements are controlled and the 

corresponding forces and moments remain passive.

All real “rigid” bodies are to some extent elastic, 

which means that we can change their dimensions 

slightly by pulling, pushing, twisting or compressing 

them (Fig. 5).

Figure.5-(a) A cylinder subject to tensile stress stretches by an 
amount of ΔL (b) A cylinder subject to shearing stress deforms 

by amount  ΔX.

Figure 5 shows two ways in which a solid might 

change its dimension when forces act on it. In state 

(a) A cylinder is stretched in state(b) A cylinder is 

deformed by a force perpendicular to its long axis.

What the two deformation types have in common is 

that a stress, deforming force per unit area, produces a 

strain, or unit deformation. In Figure.5A tensile stress 

is illustrated in state (a) A shearing stress in state(b). 

The stress and strain take different forms in these two 

situations but they are proportional to each other and 

the constant proportionality is called a Modulus of 

elasticity. So (Eq. 4):

 Stress = Modulus * Strain (4)

For a range of applied stresses, the stress-strain 

relation is linear (the subject reverses to it fi rst situation 

when the stress is removed). If the stress is increased 

beyond the Yield strength of the object, the subject 

becomes permanently deformed and if the stress 

continues to increase, the object eventually ruptures at 

a level of stress called, the Ultimate strength.  That’s 

the reason that an elastic rope is used, because in 

elastic objects, the level of yield strength is higher than 

others. An elastic object is an object that, every section 

of it experiences the same strain when a given stress is 

applied but in other objects the strain that each particle 

experience isn’t equal and it’s erratic. Also the level of 

elasticity wasn’t so high in ropes, so massive stresses 

couldn’t be applied to the ropes because they deformed 

and caused bigger errors in our experiments.

Tension 
For tension and compression, the stress on the objects 

is defi ned as F/A, where F is the magnitude of the force 

applied perpendicular to an area A on the object. 

Strain is a dimensionless quantity ΔL/L (the fractional 

or percentage changes in length of the object). Because 

the strain is a dimensionless the modulus has the same 

dimension as the stress – namely force per unit area. 

The modulus for tensile and compression stresses is 

called the Young’s modulus and is represented by the 

symbol E or Y (Eq. 5).

  (5)

Shearing 

In shearing, the stress is a force per unit area, but 

the vector lies in the plane of the area. The strain is a 

dimensionless ratio ΔX/L. The corresponding modulus 

which is given the symbol G or μ is called Shear 
Modulus (Eq. 6).

 F
―
A 

= G Δx
―L  

 (6)

Elastic objects reverse to their first situation if their 

stress is removed (if stress is under the yield strength), 

the stress-strain relation is linear so they are under the 

infl uence of a Hook’s law restoring force given by F=-kx. 

So we can measure the Energy of shearing and tensile 

force by combining Hook’s law with( Eq.5) and (Eq.6) :

 Energy =  1
―
2 kx2 (7)

 Tensile Energy =  1
―
2 

 (8)

 Shearing Energy =  1
―
2  (9)

We can calculate the energy and the torque needed 

to twist a rope of length L through an angleφ by 

considering the radius of the rope (r).

In Figure ( 6) we calculate the exerted torque of a 

part of a cylinder. And then we can add up the torques 
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of all the particles to find the torque of the body as a 

whole. The sum is taken over all the particles in the body 

(Eq. 10, 11).

Figure 6. We measure the angular position Δφ by this equation  
Δφ= Δx―r    where Δx is the arc length of a circular path of radius r 

and angel  Δφ .and  Fφ is the force of a part of the cylinder.

  (10)

 Fφ = ΔA μ  (11)

Where μ is the shearing modulus.

The body rotates about a rotation axis, changing its 

angular position from  φ1 to φ2 under goes an angular 

displacement  Δφ.

Now we want to calculate the amount of torque 

exerted on a part of the elastic cylinder for an angular 

displacement Δφ around the rotation axis.

 Δm = rF (12)

Combining ( Eq. 11) and (Eq.12) gives us (Eq. 13): 

 Δm = rFφ = μ(ΔA)  (13)

Where Δm is an amount of torque for an angular 

displacement Δφ in a part of the cylinderandF is the 

applied force.

 M = Σ (ΔA) (14)

 ΔA = Δr(Δθr)  (15)

Figure 7.  Figure 6 view from top

The second moment of area that, designated by ‘I’, 

tells us how the cross-section of the rotating body is 

disturbed about an axis. ‘I’, depends on how the load is 

applied to the cylinder. When we are twisting a cylinder 

‘I’ is:

 I = Σ r32πΔr  (16)

So combining the Eq.15 and Eq.16 is:

 M  (17)

and the energy is:

 E =   1
―
2  MΔφ (18)

Using Eq.17 and Eq.18 we can rewrite the energy:

 E =   1
―
2  MΔφ =  (19)

We found that a simple beam is subject to a shearing 

force and a bending moment along its length, both of 

which tend to distort it from its straight unloaded shape. 

But experience shows that the distortion due to shear in a 

beam which its length is much greater than its thickness 

is completely negligible compared with the distortion 

produced by the action of the bending moment.

In real world if we wanted to measure the amount 

of B or either Young modulus or Shearing modulus of 

the rope , first we attach a short rope in to a wall like 

Figure8, after the rope tilted by the gravity .

 Figure 8– A rope that is attached to wall is tilted by gravity 
.Where  Δx is the distance of the end of the rope before and 

after tilting.

We measure the Δx and afterwards we use this 

formula:

 Δx =  (20)

where B is Bulk modulus that is B=E.I  and W is 

the weight per unit of length.

The amount of G (shearing modulus) is calculated 

using (Eq. 21).

 Y = 2μ(1+σ) (21)

Where Y is the Young modulus,  μ is the Shearing 

modulus and  σ Poisson’s ratio.

Poisson’s ratio is the negative ratio of transverse 

to axial strain. When a material is compressed in 

one direction, it usually tends to expand in the other 

two directions perpendicular to the direction of 

compression. This phenomenon is called the Poisson 

effect. 

Poisson's ratio σ is a measure of this effect. The 

Poisson ratio is the fraction (or percent) of expansion 

divided by the fraction (or percent) of compression, for 

small values of these changes.

Conversely, if the material is stretched rather 

than compressed, it usually tends to contract in the 

directions transverse to the direction of stretching. 

This is common observation when a rubber band is 

stretched, when it becomes noticeably thinner. 

Materials and Methods

In our experiments we used several plastic ropes 

with different lengths. We fixed one end of the ropes 

and rotated the other end. Once the first loop occurred, 

we measured the distance between the two ends of 

the ropes. Afterwards we made charts with these 

measurements.

Figure 9- setup view

We wanted the energy to be a dimensionless 

quantity so we factorize the phrase “   1―
2 

 C―
L  ” and the 

Energy of state (b)is:

 Eb =      1
―
2 

C(  
φ
—
L 

)2 +     1
―
2  

L (22)

 Eb =      1
―
2  

C
―
L

  (  
 
B
―
C

    + φ ) (23)

Then we drew the char ts by using “Matlab” 

program.

After that we found out that with a specific d 

(distance of the two ends of the rope) as it explained in 

( Fig. 10). The magnitude of Energy (a) and (b) changes 
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and in one point the two energies become equal.

Figure 10.-when the distance of the two ends of the rope is equal 
to the length of the rope (d=L) after we reduce d, the Energy of 
state(a) starts to increase and the Energy of state (b) starts to 
decrease , until the Energies are at the same level in magnitude 
, but after that the Energy of state(b) starts to be bigger than 
Energy of state(a) at this time the rope suddenly changes into 
state(a) from state(b) and that’s the time that we have a loop in 

our rope .

Figure 11. In (Fig. 1) we found out how much energy is saved in 
the rope when a loop occurs. So we discovered the amount of d 

and R in each point

And at last we compared our experiments and the 

mathematical model with each other.

Conclusion

A f t e r  we  c o m p a r e d  ou r  ex p e r i m e n t s  w i t h 

mathematical model we found out that these energies are 

approximately equal to each other (Fig. 12). 

Figure 12. Comparison of our experiments and mathematical 
model

As you can see in Figure (12) the curved line is our 

mathematical chart and the others are, our experiments. 

The Experiment’s Error was nearly 10% and we only 

surveyed the mathematical model in two dimensions. 

We concluded that, by using the mathematical model, 

we can understand when a loop occurs with regards to 

specific (R) s and (D)s.
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